Í ferningslaga bókaskáp eru tvær jafn þykkar og jafn háar bækur skorðaðar eins og myndin sýnir. Ef hæð skápsins er $1$ lengdareining, hver er þá þykkt bókanna?
Fimm konur Bryndís, Eydís, Freydís, Hafdís og Vigdís hafa sett upp hatta, sem eru annað hvort hvítir eða svartir að lit. Engin kvennanna veit hvernig litan hatt hún sjálf er með á höfðinu. Nú er vitað að kona með svartan hatt segir ávallt satt en kona með hvítan hatt lýgur alltaf.
Látum $a_1,\dots,a_n$ vera ólíkar oddatölur, þannig að engin
frumtala stærri en 5 gangi upp í neinni þeirra. Sýnið að
$$
\frac 1{a_1}+\cdots +\frac 1{a_n} \lt 2.
$$
Gefinn er jafnhliða þríhyrningur $A B C$ og innan í honum er
punkturinn $F$ þannig að flatarmál þríhyrningsins $A F C$ er jafnt
flatar-máli ferhyrningsins $D B E F$. Ákvarðið hornið $\angle E F C$.
[Athugið að tveir þríhyrningar eru eins ef þeir hafa sama flatarmál, eina jafn langa hlið og eitt horn jafn stórt.]
Á hversu marga vegu er unnt að raða tölunum $1,2,\ldots,n$ í sæti þannig að eftirfarandi gildi fyrir sérhvert $i = 2,\ldots,n$: Talan í $i$-ta sæti er annaðhvort minni en allar tölurnar á undan eða stærri en allar tölurnar á undan.